

WEEKLY TEST MEDICAL PLUS -04 TEST - 02 RAJPUR SOLUTION Date 28-07-2019

[CHEMISTRY]

- 46. (b) The number of electrons in an atom is equal to its atomic number *i.e.* number of protons.
- 47. (a) No. of protons = Atomic no. = 25 and no. of neutron = 55 25 = 30.
- 48. (a) Na^+ and Ne are isoelectronic which contain 10 electrons.
- 49. (a) One molecule of CO_2 have 22 electrons.
- 50. (c) Mass of an atom is due to nucleus (neutron + proton).
- 51. (c) Na^+ has 10 electron and Li^+ has 2 electron so these are different number of electron from each other.
- 52. (c) $P_{15} = 2, 8, 5$
- 53. (c) $\frac{16}{8}O^{-}$ have more electrons than neutron p = 8, e = 10, n = 8.
- 54. (b) ${^{-}}CONH_2 = 6 + 8 + 7 + 2 + 1$ (from other atom to form covalent bond) = 24
- 55. (c) Neutron in ${}_{6}^{12}C = 6$, Neutrons in ${}_{14}^{28}Si = 14$ Ratio = 6 : 14 = 3 : 7.
- 56. D
- 57. (c) $H^- = 1s^2$ and $He^+ = 1s^2$.
- 58. (a) Number of unpaired electrons in inert gas is zero because they have full filled orbitals.
- 59. (a) In case of N^{3-} , p = 7 and c = 10
- 60. C
- 61. (a) The central part consisting whole of the positive charge and most of the mass caused by nucleus, is extremely small in size compared to the size of the atom.
- 62. (c) α -particles pass through because most part of the atom is empty.
- 63. (b) An electron jumps from L to K shell energy is released.
- 64. B
- 65. (c) Emission spectra of different λ accounts for quantisation of energy.
- 66. A

Ratio fo atoms C:H:CI:: $\frac{47.5}{12}$: $\frac{2.54}{1}$: $\frac{50}{35.5}$:: 3.96:2.54:1.41 :: 2.8:1.8:1 67.

::14:9:5

- Empirical formula = $C_{14}H_9Cl_5$ Gram molecular mass of NH_3 is 7 g. 68
 - \therefore No. of molecules in 4.25 g of NH₃ = $\frac{4.25}{17}$ N_A = $\frac{N_A}{4}$

Now, one molecule of NH, contans 4 atoms

$$\therefore \quad \frac{N_A}{4} \text{ molecules contian } \frac{N_A}{4} \times 4 = N_A \text{ atoms}$$

Again, 32 g of $O_2 = N_A$ molecules = $2N_A$ atoms

$$\therefore 8 \text{ g of } O_2 = \frac{N_A}{32} \times 8 = \frac{N_A}{4} \text{ molecules } \frac{2N_A}{32} \times 8 = \frac{N_A}{2} \text{ atoms}$$

On the other hand,

 $2g ext{ of } H_2 = N_A ext{molecules} = 2N_A ext{ atoms}$

4g of He = N_{Δ} atoms [: gram atomic mass of He = 4g]

69. Moles of water produced =
$$\frac{0.72}{18}$$
 = 0.04

$$Moles of CO_2 produced = \frac{3.08}{44} = 0.07$$

Equation for combustion of an unknown hydrocarbon, C_xH_v is

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

$$\Rightarrow$$
 x = 0.07 and $\frac{y}{2} = 0.04 \Rightarrow y = 0.08$ and $\frac{x}{y} = \frac{0.07}{0.08} = \frac{7}{8}$

 \therefore The empirical formula of the hydrocarbon is C_7H_8

70. Number of gram equivalents of HCI =
$$\frac{\text{Normality} \times \text{V}}{1000} = \frac{0.1 \times 100}{1000} = 0.01$$

Number of gram equivalents of metal carbonate = number of gram equivalents of HCI

$$\frac{W}{F} = 0.01$$
 \Rightarrow $\frac{2}{F} = 0.01$ \Rightarrow $E = 200$

Volume of 44g of N₂O = 22.4 L at STP 71.

Volume of 1 g of
$$N_2$$
O occupies $\frac{22.4}{44}$ L

Volume of 4.4 g of N₂O occupies $\frac{22.4}{44} \times 4.4 = 2.24 \text{ L}$